Vectorization

What is vectorization?

Vectorization is a parallel computing method that compiles repetitive program instructions into a single vector (combination of multiple datasets), which is then executed simultaneously and maximizes computer speed. Vectorization is an example of single instruction, multiple data (SIMD) processing because it executes a single operation (e.g., addition, division) over a large dataset. Today, vectorization is a critical micro-process and universally present in modern computers.

How does vectorization work?

Vectorization starts with the understanding the downside of scalar programming—the process of operating on a dataset sequentially. For example, a developer writes a for-loop to add two sets of numbers [a,b] to get a result [c]. In early computing, computers did just that, repeating the addition of a and b pairs one after another. Because these processes take place sequentially, the time needed to complete the program can be massive, depending on the datasets’ size.

This excess runtime is no problem for most users for a small set of numbers, but the simple repeated instruction means lost time and energy when working with large datasets. Using applications that automatically detect and convert scalar instructions into vectorized implementations, computers can drastically decrease runtime processing. Most computers today contain automatic vectorization abilities and multi-core CPUs, which mean order of magnitude performance gains.

Examples of vectorization

  • NumPy. Python is known as one of the most development-friendly languages yet struggles with runtime for simple arithmetic. The NumPy tool gives Python developers the vectorization abilities of C or Fortran. NumPy makes vectorization easy and runtime smooth for developers by enabling parallel operations, list creation for NumPy arrays, and memory locality.
  • High-performance computing. An essential feature of modern computing is the use of parallel processing algorithms that divide and conquer tasks. Where before vectorization exclusively lived in supercomputers, parallel computing is now the standard for global computer architectures.
  • Fortran. Initially developed for mathematical and scientific applications, Fortran once was the most popular high-level programming language. Still famous for working with large datasets, Fortran is renowned for its vector and matrix processing capabilities.

Further Reading

Sam Ingalls
Sam Ingalls
Sam Ingalls is an award-winning writer and researcher covering enterprise technology, cybersecurity, data centers, and IT trends, for Webopedia, eSecurity Planet, ServerWatch, and Channel Insider.

Top Articles

List of Windows Operating System Versions & History [In Order]

The Windows operating system (Windows OS) refers to a family of operating systems developed by Microsoft Corporation. We look at the history of Windows...

How to Create a Website Shortcut on Your Desktop

Website Shortcut on Your Desktop reviewed by Web Webster   This Webopedia guide will show you how to create a website shortcut on your desktop using...

What are the Five Generations of Computers? (1st to 5th)

Reviewed by Web Webster Each generation of computer has brought significant advances in speed and power to computing tasks. Learn about each of the...

Hotmail [Outlook] Email Accounts

Launched in 1996, Hotmail was one of the first public webmail services that could be accessed from any web browser. At its peak in...

Sales CRM

A sales CRM, or customer relationship management (CRM) tool for sales, is frequently...

ExecuPharm Ransomware Attack

On March 13, 2002, the ExecuPharm ransomware attack was used to encrypt and...

DarkSide Ransomware

DarkSide ransomware, first discovered in August 2020, is used to perform sensitive data...