Short for Low Voltage Differential Signaling, a low noise, low power, low amplitude method for high-speed (gigabits per second) data transmission over copper wire.
LVDS differs from normal input/output (I/O) in a few ways:
Normal digital I/O works with 5 volts as a high (binary 1) and 0 volts as a low (binary 0). When you use a differential, you add a third option (-5 volts), which provides an extra level with which to encode and results in a higher maximum data transfer rate.
A higher data transfer rate means fewer wires are required, as in UW (Ultra Wide) and UW-2/3 SCSI hard disks, which use only 68 wires. These devices require a high transfer rate over short distances. Using standard I/O transfer, SCSI hard drives would require a lot more than 68 wires.
Low voltage means that the standard 5 volts is replaced by either 3.3 volts or 1.5 volts.
LVDS uses a dual wire system, running 180 degrees of each other. This enables noiseto travel at the same level, which in turn can get filtered more easily and effectively.
With standard I/0 signaling, data storage is contingent upon the actual voltage level. Voltage level can be affected by wire length (longer wires increase resistance, which lowers voltage). But with LVDS, data storage is distinguished only by positive and negative voltage values, not the voltage level. Therefore, data can travel over greater lengths of wire while maintaining a clear and consistent data stream.