Main » TERM » B »

Bayesian filter

(bā´ zē-en fil´tër) (n.) A technique for identifying incoming e-mail spam. Unlike other filtering techniques that look for spam-identifying words in subject lines and headers, a Bayesian filter uses the entire context of an e-mail when it looks for words or character strings that will identify the e-mail as spam. Another difference between a Bayesian filter and other content filters is that a Bayesian filter learns to identify new spam the more it analyzes incoming e-mails.

Named for English Mathematician, Thomas Bayes

Bayesian filtering is named for English mathematician Thomas Bayes, who developed a theory of probability inference. Bayesian filtering is predicated on the idea that spam can be filtered out based on the probability that certain words will correctly identify a piece of e-mail as spam while other words will correctly identify a piece of e-mail as legitimate and wanted. At its most basic level, a Bayesian filter examines a set of e-mails that are known to be spam and a set of e-mails that are known to be legitimate and compares the content in both e-mails in order to build a database of words that will, according to probability, identify, or predict, future e-mails as spam or not. Bayesian filters examine the words in a body of an e-mail, its header information and metadata, word pairs and phrases and even HTMLcode that can identify, for example, certain colors that can indicate a spam e-mail.

How it Works

Bayesian filters are adaptable in that the filter can train itself to identify new patterns of spam and can be adapted by the human user to adjust to the user's specific parameters for identifying spam. Bayesian filters also are advantageous because they take the whole context of a message into consideration. For example, not every e-mail with the word "cash" in it is spam, so the filter identifies the probability of an e-mail with the word "cash" being spam based on what other content is in the e-mail.

Proponents of Bayesian filters assert that the filters return less than one percent of false positives.

Other forms: Bayesian filtering (v.)







LATEST ARTICLES
Facts about Cloud Computing in 2017

The following facts and statistics capture the changing landscape of cloud computing and how service providers and customers are keeping up with... Read More »

Facts about Computer Science: Education and Jobs

The following computer science facts and statistics provide a quick introduction to the changing trends in education and related careers. Read More »

Texting & Chat Abbreviations

From A3 to ZZZ this guide lists 1,500 text message and online chat abbreviations to help you translate and understand today's texting lingo. Read More »

STUDY GUIDES
The Five Generations of Computers

Learn about each of the five generations of computers and major technology developments that have led to the computing devices that we use... Read More »

Computer Architecture Study Guide

Computer architecture provides an introduction to system design basics for most computer science students. Read More »

Network Fundamentals Study Guide

Networking fundamentals teaches the building blocks of modern network design. Learn different types of networks, concepts, architecture and... Read More »